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Abstract

Closed-book question answering (QA) systems must answer questions using only
parametric knowledge, which makes them prone to closed-book hallucination:
confident but factually incorrect answers with no supporting evidence [1]. We view
this behavior as arising from two failure modes: (1) the model lacks the relevant
knowledge, and (2) the knowledge is implicitly present in its parameters, but the
model does not reliably retrieve or apply it at inference time [2| [3]. We study these
failure modes on HotPotQA using Qwen2.5-7B and Qwen3-8B and propose a
three-stage mitigation pipeline.

To address the “cannot access knowledge” case, we perform Chain-of-Thought
(CoT) distillation from a larger Qwen3-235B teacher to unlock latent parametric
knowledge. To address the “no knowledge” case, we train the model to abstain. We
replace incorrect predictions with “I don’t know” and finetune on a class-balanced
mix of correct answers and abstentions. Finally, we apply Reinforcement Learning
from Verifier Feedback (RLVF) with an NLI-derived factuality score to heavily pe-
nalize confident errors. On HotPotQA, this pipeline reduces hallucinated responses
and increases appropriate refusals. Furthermore, we demonstrate that unsuper-
vised Semantic Entropy (SE) effectively flags residual hallucinations, enabling a
consensus-based rejection strategy that improves selective F1 score from 0.50 to
0.70.
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2 Introduction

Large Language Models (LLMs) frequently suffer from hallucination in closed-book settings, gen-
erating plausible but factually incorrect assertions [[I]. This issue is particularly acute in Small
Language Models (SLMs), which often lack the capacity to distinguish between what they know and
what they have forgotten. This unreliability creates a critical barrier for deployment in safety-critical
or privacy-constrained environments where Retrieval-Augmented Generation (RAG) is not feasible.
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Language Processing with Deep Learning.



To address this, we propose a pipeline to enhance both capability and calibration in Qwen2.5-7B-
Instruct. We employ Chain-of-Thought (CoT) Distillation from a massive teacher to "unlock" latent
parametric knowledge, followed by Abstention-Aware Fine-Tuning and Reinforcement Learning
from Verifier Feedback (RLVF) to teach the model to explicitly abstain when it lacks knowledge.

Our experiments on HotPotQA validate this multi-stage approach. We demonstrate that CoT distilla-
tion improves Exact Match accuracy from 18.86% to 24.31%, significantly outperforming standard
SFT. Furthermore, our supervised abstention baseline achieves 97.5% precision in detecting knowl-
edge boundaries. We find that RLVF effectively tunes the risk-coverage trade-off, increasing answer
rates by ~ 5% while maintaining safety. Finally, we validate that unsupervised Semantic Entropy
(SE) serves as a robust proxy for correctness, allowing for the rejection of residual hallucinations at
inference time.

3 Related Work

Hallucination in LL.Ms: Hallucination refers to the generation of text that is nonsensical or unfaithful
to the provided source or established world knowledge [1]. In closed-book settings, where models
rely on parametric memory, hallucinations often stem from the model’s inability to accurately assess
the boundaries of its own knowledge [2]. While larger models exhibit emergent self-calibration,
Small Language Models (SLMs) are particularly prone to confident errors, necessitating explicit
intervention strategies.

Reasoning Distillation: Chain-of-Thought (CoT) prompting significantly enhances LLM reasoning
but typically requires large model scales (>100B parameters) to be effective. To transfer this capability
to smaller models, [4] and [S] proposed CoT distillation, where a student model is fine-tuned on
reasoning traces generated by a large teacher. Our work extends this by imposing "internalized
knowledge" constraints on the teacher, ensuring the distilled reasoning relies on facts the student can
plausibly retrieve from its own weights rather than external context.

Abstention and Uncertainty: Teaching models to say "I don’t know" is a classic problem in reliable
QA [6]. Recent approaches have focused on unsupervised methods to detect uncertainty, such as
analyzing the entropy of semantic clusters in model generations (Semantic Entropy) [[7]] or inspecting
internal attention patterns (RAUQ) [8]]. [3] demonstrated that models can be trained to verbalize
this uncertainty. We combine these streams by using supervised abstention for base calibration
and refining it with NLI-based Reinforcement Learning (RLVF) that directly rewards the alignment
between confidence (low entropy) and factuality.

4 Approach

Key Models:

¢ (BASELINE) Qwen2.5-7B-Instruct [9]: Referred to as Qwen2.5-Instruct.

* (BASELINE) Qwen2.5-7B-Instruct (SFT): Referred to as Qwen2.5-SFT. Finetuned using
LoRA on 10,000 question-answer pairs in HotPotQA

¢ Qwen2.5-7B-Instruct (Finetune-CoT): Referred to as Qwen2.5-FCoT. Finetuned on Dataset
B to generate a reasoning trace and answer for each question, without the context of
supporting paragraphs.

¢ Qwen2.5-7B-Instruct (Abstention Finetuned): Referred to as Qwen2.5-Abstain. Finetuned
using QLoRA on the question-answer/abstention pairs in Dataset C.

¢ Qwen2.5-7B-Instruct (Abstention Finetuned + RLVF): Referred to as Qwen2.5-RLVF.

Finetune-CoT To enable complex reasoning capabilities in our smaller student model, we employed
Fine-tune-CoT [3], a framework that leverages the capabilities of large language models (LLMs) to
supervise the training of smaller models. While massive LLMs can solve complex tasks using Chain-
of-Thought (CoT) prompting, they are often computationally prohibitive to deploy. Fine-tune-CoT
circumvents this by using a large "Teacher" model to generate synthetic reasoning traces, which are
then used to fine-tune a "Student" model. This effectively transfers the reasoning ability, allowing the
smaller model to learn how to solve the problem.



The standard Fine-tune-CoT pipeline consists of three stages: (1) prompting the teacher to generate
step-by-step rationales, (2) curating the data by filtering out samples with incorrect answers, and (3)
fine-tuning the student on the validated reasoning traces.

In our implementation, we adapted the Generation and Curation stages to create a specialized
"Internalized Knowledge" dataset (Dataset B). We utilized Qwen3-235B as our teacher model. To
address the common issue of hallucination during reasoning generation, we provided the teacher with
the ground-truth paragraphs as context. However, to ensure the student model learns to function in a
closed-book setting, we imposed strict constraints on the teacher’s output: it was prompted to frame
its reasoning as a step-by-step recall of facts, explicitly forbidding citation markers (e.g., "according
to the passage"). We then implemented a validation loop that filtered samples not only for answer
correctness (as in standard Fine-tune-CoT ) but also for adherence to this "internalized" stylistic
constraint.

Abstention-Aware Fine-Tuning To mitigate hallucinations, we employed a specialized fine-tuning
strategy designed to calibrate the model’s confidence. Rather than forcing the model to answer
every query—which encourages hallucination on out-of-distribution or forgotten knowledge—we
fine-tuned the model to explicitly output a refusal phrase ("I don’t know") when it lacks the internal
knowledge to answer correctly.

We first aimed to map the "knowledge boundary” of Qwen2.5. We hypothesize that if the Qwen2.5-
FCoT generates an incorrect answer for a training example x despite having access to its internal
weights, that example represents a hallucination-prone region. We performed inference on the first
N = 40,000 examples of the HotpotQA training set. For every example, we compared the model’s
predicted answer ¢ against the ground truth y using Exact Match (EM) scoring. This effectively
partitioned our training data into two sets:

e Correct Set (Scorrect): Samples where the model’s internal knowledge was sufficient
EM(7,y) = 1.

 Hallucination Set (Shaliucination): Samples where the model confidently generated an
incorrect answer (EM(¢, y) = 0)

Using the partitioned data, we constructed a new supervised fine-tuning dataset (Dataset C) designed
to reinforce known knowledge while penalizing hallucinations. First, we relabeled the ground truth
for Shaitucination to "I don’t know", and kept the ground truth for S.,r..t. However, a significant
risk in abstention training is the "laziness" objective, where a model learns that outputting "I don’t
know" is a global minimum for loss reduction. To prevent the model from defaulting to refusal,
we enforced a strict class balance by randomly sampling 8000 examples from S¢oyrect and 2000
examples from Shqiiucination Where the model should now abstain. This resulted in a final dataset of
10,000 examples will an 80/20 class balance. We then finetuned Qwen2.5-Instruct using QLoRA.

Reinforcement Learning from Verifier Feedback (RLVF): To refine the abstention boundary
learned during supervised fine-tuning, we train the Qwen2.5-Abstain model with policy-gradient
RL using a reward signal derived entirely from verifier factuality and model confidence. Although
inference is closed-book, the reward model is not: the Factuality Verifier—a DeBERTa-based
NLI model used in prior factuality and hallucination work [[10, [11]] —receives the full HotPotQA
supporting paragraphs [12]]. For each example, we concatenate all supporting titles and sentences
into a single premise and compute:

* Pent: entailment probability,
* Peont: contradiction probability,

* f = Pent — Peont: grounded factuality score.

Thus RLVF optimizes semantic factuality rather than gold-label EM.
Confidence Term: We include a normalized entropy confidence score
H, avg

Hmax ’

following semantic-entropy—based uncertainty estimation [7]. Confidence increases reward only
when supported by positive factuality.

conf=1—




Abstention Detection: Abstentions are not identified via string matching. Instead, the Abstention-
Classifier applies the same NLI verifier to check whether the model’s answer entails an abstention-
style statement (e.g., “I don’t know”), similar in spirit to prior work on verbalized uncertainty [3]. If
so, the model receives a fixed penalty of —1.0.

Reward Function: For non-abstaining outputs, reward depends solely on verifier factuality and

confidence:
R= {10f()\base + )\conf : COIlf) .f Z Oa
5 f(Abase + Aconf - conf)  f < 0.

Positive factuality is up-weighted (10x), negative factuality down-weighted (5x).

We underscore four key design choices in our RLVF implementation. First, by grounding the
reward in verifier evidence rather than Exact Match (EM), we optimize for semantic correctness,
avoiding the brittleness of string matching for valid paraphrases [1]]. Second, we incorporate an
entropy-normalized confidence term into the reward, mirroring recent uncertainty-based shaping
techniques [7] to encourage calibration. Third, we employ asymmetric scaling—applying larger
multipliers for positive factuality—to bias the policy toward answering while still strictly penalizing
contradictions. Finally, we "warm start" the RL process from our supervised abstention checkpoint;
this ensures the model possesses a pre-established abstention boundary, significantly stabilizing the
early stages of policy optimization compared to training from scratch [S]].

4.1 Scalable Implementation and Model Transition

Platform Migration and Architecture Upgrade Our Initial experiments utilized Qwen2.5-7B
on a standard virtual machine infrastructure. However, to address training instability and accelerate
throughput (achieving a ~ 10x speedup), we migrated our training pipeline to the Tinker high-
performance compute platform. As the platform does not offer a Qwen2.5 model, we transitioned to
Qwen3-8B. Validations confirmed that Qwen3-8B performs comparably to Qwen2.5-7B on our base
benchmarks, ensuring that our architectural conclusions remain robust.

Data Scaling Leveraging this improved throughput, we scaled our supervised fine-tuning (SFT)
from the initial 10,000-sample subset to the full 80,000-sample HotPotQA training set. Similarly, we
re-distilled the CoT and Abstention models using the complete teacher-generated dataset, significantly
expanding the breadth of training data compared to the pilot experiments.

Uncertainty Estimation: RAUQ — Semantic Entropy While our initial design proposed using
the RAUQ metric [8]], which relies on attention weight introspection, the abstracted inference API of
our scaled platform precludes access to internal hidden states. Adopting a black-box approach, we
implemented Discrete Semantic Entropy (SE) [7].

To estimate SE without access to token probabilities, we sample M = 10 stochastic generations per
question and cluster them based on semantic equivalence using a bidirectional NLI entailment model
(microsoft/deberta-large-mnli). The probability of each semantic cluster C'is approximated
via Monte Carlo integration:

1 M
P(Clz) ~ i D (s €C) 1)
1=1

The total uncertainty is then given by the entropy over these semantic clusters: H(z) =
— > P(Clz)log P(C|z). This metric serves as our primary signal for evaluating the efficacy
of our abstention mechanism in calculating and rejecting hallucinations.

S Experiments

5.1 Data

We use the the training and validation splits of the HotPotQA [12] distractor dataset. The distractor
setting has question-answer pairs with ten paragraphs as context, two of which are relevant to
answering the question. Since we ran our tests in a closed-book setting, we discarded all ten context
paragraphs for our finetuning, RL, and evaluation methods. We define 3 training datasets:



Dataset A1/A2: The first and second 10,000 question-answer pairs of HotPotQA (distractor setting,
train split), respectively.

Dataset B: The first 10,000 question-answer pairs of HotPotQA (distractor/train) with reasoning
traces generated according to our "Finetune-CoT" section. ]
* Q: Which magazine was started first Arthur’s Magazine or First for Women?

* R: Step 1: The question asks ... Step 2: Arthur’s Magazine was published starting in 1844...
Step 3: Since 1844 is earlier than the 1980s ...the answer is Arthur’s Magazine.

* A: Arthur’s Magazine
Dataset C: 10,000 question-answer or question-abstion pairs in the first 40,000 samples of HotPotQA
(distractor/train). See our "Abstention-Aware Fine-Tuning" section [ for details on generation.

* Q: Who wrote the 1971 drama which stars the winner of the 1997 BAFTA Fellowship?
A: Tdon’t know.

5.2 Evaluation method

We use Exact Match and F1 between gold answers and the model’s predicted answers to gauge
performance. For abstention models, we also calculate Selective EM and Selective F1 by considering
only the answers not abstained on. We also gauge the uncertainty of our models via RAUQ and
semantic entropy during inference. By sorting model responses by their RAUQ score [8] and
iteratively rejecting the most uncertain samples, we use this as a target performance for our model’s
abstention.

5.3 Experimental details

We evaluated Qwen2.5-Instruct (bfloat16) and its fine-tuned variants (SFT, FCoT, Abstain) using
QLoRA (4-bit NF4 base, FP16 adapters). All fine-tuning experiments were run for one epoch.

Training Configuration: We applied LoRA (r = 16, o = 32, dropout 0.05) to all linear projection
layers. Optimization used adamw_torch with a cosine scheduler (3% warmup) and an effective
batch size of 16. Supervised Baselines (SFT, FCoT, Abstain): Trained with a learning rate of 2e-4.
SFT used standard chat formatting (max length 512), masking user prompts. FCoT & Abstain
utilized the specific delimiter format (Question ### Rationale -> Answer) to minimize token
overhead, with a max length of 2048 tokens to accommodate reasoning traces. Qwen2.5-SFT was
trained on Dataset A1, Qwen2.5-FCoT was trained on dataset Dataset B, and Qwen2.5-Abstain was
trained on Dataset C. Qwen2.5-RLVF: Initialized from the supervised abstention (Qwen2.5-Abstain)
checkpoint. Trained using on-policy generation with Dataset A2 with a learning rate of le-5 and
weight decay 0.01.

Inference: Experiments were conducted in a closed-book setting using greedy decoding. Standard
Models: Used a concise system prompt restricting output to short entities (max gen: 50 tokens).
Reasoning Models: Prompted with the ### delimiter to trigger reasoning traces (max gen: 512
tokens); answers were parsed programmatically.

5.4 Results

Generation Performance and Error Correction: Our fine-tuning experiments demonstrate clear
improvements over the Qwen2.5-Instruct baseline across all metrics. As shown in Table [/} the
Chain-of-Thought (CoT) model achieved the highest exact match accuracy of 24.31%, a significant
gain over the Base model’s 18.86%. Notably, the CoT approach proved superior in error correction,
successfully rectifying 697 questions that the Base model originally answered incorrectly, compared to
477 corrections by the SFT model. While both fine-tuning methods introduced regressions—breaking
a smaller number of previously correct answers (249 for SFT and 294 for CoT)—the net performance
gain validates the efficacy of distilling reasoning traces over standard supervised fine-tuning for
this domain. Furthermore, our best performing model (Qwen2.5-FCoT) acheieved near SoTA
performance compared to much larger models. Specifically, PALM-62B acheieved EM 26.46 and F1
35.67, validating our method’s effectiveness E}

"Parts of the reasoning trace redacted for conciseness



Abstention Mechanism and Reliability: Table [6| presents our abstention models’ precision and
recall metrics, where precision measures the percentage of abstentions that correspond to questions
the reference model answered incorrectly (validating that the model abstains when appropriate), and
recall measures the percentage of reference model errors that were successfully avoided through
abstention.

The supervised model (Qwen2.5-Abstain) demonstrates highly conservative behavior, achieving
97.49% precision against the Base model, meaning its abstentions are almost invariably justified.
Its recall ranges from 55-61% across reference models, performing best on the "Hardest" subset
(60.85%)—questions where all baseline models failed. This confirms the mechanism activates most
strongly on genuinely difficult queries.

The RLVF model exhibits a different profile: it exhibits higher precision (91-98%) but achieves lower
recall (50-54%). This trade-off is intentional—the reward structure penalizes abstention modestly
(—1) relative to hallucinations (—5), encouraging the model to attempt more questions. As shown
in Table[5] this yields higher coverage: the RLVF model answers 58.83% of questions versus the
supervised model’s 53.65%.

However, this increased coverage comes at the cost of selective accuracy. The supervised model
achieves 37.98% EM on attempted questions, compared to the RLVF model’s 34.62%. This reflects
the fundamental trade-off visualized in Figure [/} the supervised approach prioritizes safety (high
precision, conservative abstention), while the RLVF approach prioritizes coverage (more attempts,
lower selective accuracy). Both strategies are valid depending on application requirements—safety-
critical domains benefit from the supervised model’s conservatism, while general-purpose systems
benefit from the RLVF model’s higher answer rate.

5.4.1 Semantic Entropy and Abstention Results
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Figure 1: F1 Score Rejection Curves: Comparing efficiency on the full dataset vs risk mitigation on
answered questions.

Uncertainty Quantification vs. Correctness We validated the efficacy of Semantic Entropy (SE)
as a proxy for correctness. As shown in Figure 2] (Right), the distribution of SE for correct answers
is heavily clustered around 0 (median ~ 0), whereas incorrect answers exhibit significantly higher
variance with a median of ~ 0.9. This confirm that high Semantic Entropy successfully signals likely
hallucinations.

Abstention Calibration We analyzed whether the model’s native abstention mechanism aligns
with semantic uncertainty (Figure [2| Left/Center). We examined both Standard Semantic Entropy
(Std SE), which measures total uncertainty over all clusters, and Conditional Semantic Entropy
(Cond SE), which normalizes uncertainty by ignoring the probability mass assigned to the "I don’t
know" cluster. For both metrics, the "Abstained" distribution is consistently shifted higher than the
"Answered" distribution, indicating the model is correctly choosing to abstain on questions where it
is internally uncertain, though the overlap suggests further gains are possible by explicitly rejecting
high-entropy answers.



Rejection Curve Efficiency Figure [1| demonstrates the trade-off efficiency of utilizing SE for
rejection. The x-axis represents the rejection rate: the percentage of samples discarded by ranking
all questions by their Semantic Entropy score (highest first) and removing the top-k%. The y-axis
shows the resulting F1 score on the retained samples. We compared two uncertainty estimation
strategies: Greedy, which estimates confidence based solely on the single most likely token sequence,
and Consensus, which marginalizes probability mass over all sampled generations that share the
same semantic meaning (the "semantic cluster"). As shown in Table |4, the Consensus strategy
consistently outperforms Greedy. At 0% rejection (all samples retained), Consensus achieves a
Selective F1 of 0.50 compared to Greedy’s 0.40. By rejecting the top 50% most uncertain samples,
the Consensus strategy improves Selective F1 to 0.70. This confirms that aggregating semantic
consistency across multiple samples provides a more robust signal for hallucination detection than
single-path generation.

6 Analysis

6.1 '"Reasoning Trace' Qualitative Check

Evidence of Successful "Internalized Knowledge'' Transfer: Qualitative inspection reveals that
the CoT model successfully learned the ’internalized knowledge’ style. As seen in Table|l] Qwen2.5-
FCoT model bridged the gap where Qwen?2.5-Instruct failed by explicitly retrieving the nationality of
both entities in Step 2, correcting the Instruct model’s factual error without using external citations.

Context (Base Wrong — CoT Correct) Generated Reasoning Trace

Q: Were Scott Derrickson and Ed Wood of the | Step 1: The question asks about the nationalities of Scott

same nationality? Derrickson and Ed Wood.

Gold: yes Step 2: Scott Derrickson is an American film director...

Base Pred: No (Wrong) while Ed Wood was an American filmmaker...

CoT Pred: yes (Correct) Step 3: Since both individuals were born and active in
the United States... the answer is yes.

Table 1: Example of Successful Knowledge Retrieval

Analysis of Regression & Hallucination: However, the reasoning process introduces two distinct
failure modes where the Instruct model was originally correct but the FCoT model regressed (see Table
[2). First, Hallucination via Reasoning: The step-by-step generation can induce false details. In the
Rose McGowan example (Table[2] Top), the FCoT model hallucinated a specific role (Cordelia Chase)
for the wrong actress, overriding the Instruct model’s correct association. Second, Granularity
Mismatch: The reasoning can lead to over-specification. In the "occupation" example (Table
Bottom), the FCoT model deduced "film director" based on specific evidence. While factually correct,
this was penalized against the rigid gold label "director," highlighting a limitation in Exact Match
(EM) metrics for reasoning tasks and the usefulness of incorporating F1 metrics.

Context (Base Correct — CoT Wrong) ‘ Reasoning Trace Fault

Failure Mode 1: Hallucination

Q: What WB supernatural drama series was Jaw- | Step 2: Rose McGowan is best known for her role as
breaker star Rose McGowan best known for being | Cordelia Chase in the WB supernatural drama series
in? “Buffy the Vampire Slayer.”

Gold/Base: Charmed (Error: Hallucinated incorrect role/show.)

CoT Pred: Buffy the Vampire Slayer

Failure Mode 2: Granularity Mismatch

Q: What occupation do Chris Menges and Aram | Step 3: Since both individuals are primarily recognized

Avakian share? for directing films, their shared occupation is film direc-
Gold/Base: Director tor.
CoT Pred: film director (Error: Trace is too specific for Gold Label.)

Table 2: Analysis of CoT Failure Modes (Regression)

6.2 SFT vs. RLVF Abstention Behavior (Risk Comparison)

Comparing the two abstention strategies reveals clear behavioral boundaries. For the query, “What
government position was held by the woman who portrayed Corliss Archer in the film Kiss and Tell?”,



the SFT model responded with “T don’t know,” reflecting the conservative abstention style learned
during supervised training. In contrast, the RLVF model, which is optimized under an asymmetric
reward structure that penalizes abstention (—1) less severely than incorrect answers (—5), chose to
attempt an answer and predicted “First Lady.” Because the correct answer is “Chief of Protocol,” this
instance illustrates a confident hallucination: the model preferred risking an incorrect response rather
than accepting the abstention penalty. Such cases demonstrate the “risk” side of the trade-off, where
the model’s incentive to avoid the abstention penalty leads to unreliable or overconfident guesses.

However, the same mechanism can also produce beneficial behavior. For example, in the query “What
army did the namesake of the ship launched as the Miinchen in 1930 fight in during the American
Revolutionary War?”, the SFT model again abstained with “I don’t know.” The RLVF model, facing
the same penalty structure, elected to answer and produced the correct response: “Continental Army.”
This represents the “reward” side of the trade-off: the model takes a calculated risk and, in this case,
succeeds in recovering information that the SFT baseline refuses to commit to. Instances like this
show that the asymmetric reward can indeed encourage productive non-abstentions, enabling the
model to fill gaps where supervised training remains overly cautious.

Together, these two examples highlight the central tension of abstention-aware RLHF. A more
aggressive penalty on abstention encourages the model to answer more often, which can yield
legitimate gains in coverage, but also increases the likelihood of confident hallucinations. Achieving
the right balance requires careful tuning of the abstention penalty and, potentially, more structured
confidence modeling to distinguish informative risk-taking from unreliable guessing.

7 Conclusion

In this work, we presented a comprehensive approach to mitigating hallucination in Small Language
Models for closed-book question answering. By decomposing the hallucination problem into "access
failures" and "knowledge gaps," we applied targeted interventions: Chain-of-Thought distillation
to improve reasoning-based retrieval, and Abstention-Aware Fine-Tuning to calibrate the model’s
refusal behavior.

Our experiments on HotPotQA reveal that these strategies are highly effective. CoT distillation
proved superior to standard fine-tuning, correcting 697 baseline errors by guiding the model to
step-by-step derivational answers. For uncorrectable knowledge gaps, our supervised abstention
mechanism achieved a 97.5% precision in flagging hallucinations, effectively converting "confident
errors" into "safe refusals." Furthermore, we demonstrated that Reinforcement Learning with Verifier
Feedback (RLVF) offers a dynamic method to tune the trade-off between caution and helpfulness,
allowing system designers to optimize for coverage without sacrificing fundamental reliability.

However, limitations remain. Our RLVF approach, while increasing coverage, slightly degraded
selective accuracy compared to the purely supervised baseline, highlighting the difficulty of optimizing
reward landscapes where "safety" (abstention) is a local optimum. Additionally, our reliance on
Semantic Entropy for post-hoc filtering, while effective, incurs a significant computational cost during
inference.

Future work will focus on two directions: (1) developing lightweight, cascading uncertainty filters
(e.g., using RAUQ as a pre-filter for Semantic Entropy) to reduce inference latency, and (2) extending
our evaluation to open-book settings to assess whether these calibration gains transfer when the model
must discriminate between parametric knowledge and retrieved context. Ultimately, our findings
suggest that "knowing what you don’t know" is a learnable capability for SLMs, paving the way for
more trustworthy autonomous agents.

8 Team Contributions

Joshua wrote the code for training and evaluating the Tinker models and running semantic entropy
evaluations, and wrote all analysis thereof.

Farhaan wrote code for training and evaluating the Qwen2.5 finetuned models, including generating
the CoT and Abstention datasets and analyzing the reasoning traces.

Ahmed implemented the Reward Learning (RLVF) training and evaluation pipeline, developed the
NLI-verifier and Abstention classification, and analyzed the abstention behavior.
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A Appendix

A.1 Abstention Model vs. SE Analysis

Standard SE: Abstained vs Answered

ropy (Uncertainy)

Inswered

Entropy Distribution: Correct vs Incorrect Answers

Figure 2: Distribution of Uncertainty (Entropy) across outcomes.

A.2 Additional SE Rejection Curves

act_match Rejection Curves (FULL Population - Efficiency)

ch Rejection Curves (SELECTIVE Population - Risk Mitigation)

Full Population (Efficiency)

Rejection Rate (%)

Figure 3: Exact Match (EM) Rejection Curves.

Selective Population (Risk Mitigation)

Table 3: Impact of Semantic Entropy-based Rejection on Exact Match (N = 2500)

Strategy Rejection Threshold Full EM Selective EM
Greedy 0% 0.1796 0.3065
Greedy 50% 0.2912 0.4863
Consensus 0% 0.2124 0.3884
Consensus  50% 0.3256 0.5944

Table 4: Impact of Semantic Entropy-based Rejection on F1 Scores (N = 2500)

Strategy Rejection Threshold Full F1 Selective F1
Greedy 0% 0.2329 0.3974
Greedy 50% 0.3482 0.5771
Consensus 0% 0.2719 0.4972
Consensus  50% 0.3828 0.6991
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A.3 Supplementary RAUQ Rejection Curves

RAUQ Rejection Curve: Accuracy vs Rejection Rate RAUQ Rejection Curve: Accuracy vs Rejection Rate

—— Exact Match (AUC: 0.421 | PRR: 0.694]
—— FL Score (AUC: 0.520 | PRR: 0.622)
Analyzed Range.

—— Exact Match (AUC: 0.340 | PRR: 0.575)
0] — F1Score (AUC: 0.420 | PRR; 0.478)
Analyzed Range

Score of Retained Samples
£
Score of Retained Samples

& &
Rejection Rate (%) Rejection Rate (%)

Figure 4: Vanilla Qwen2.5-7B Rejection Curve Figure 5: Finetuned Rejection Curve

Figure 6: RAUQ Rejection Curves Comparison. Both models show improved accuracy as high-
uncertainty samples are rejected, with the finetuned model achieving higher overall retention quality.

A.4 Confusion Matrix
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Prec: 97.5% | Rec: 55.7%
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RLHF vs INSTRUCT
Prec: 97.8% | Rec: 49.7%
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Prec: 96.2% | Rec: 50.8%
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Figure 7: Abstention Performance Comparison: Supervised Fine-Tuning vs. RLHF. Top: Confusion
matrices for the supervised abstention model (Qwen2.5-Abstain SFT), which was trained with explicit
abstention labels on questions where baseline models failed. Bottom: Confusion matrices for the
RLHF model, trained using policy gradient reinforcement learning with reward shaping. Each panel
shows how well the model’s abstention decisions align with questions that reference models answered

incorrectly.
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A.5 Additional Tables

Table 5: Comparison of Experimental and State-of-the-Art Results on the HotpotQA Dataset (Dis-
tractor/Validation) (EM and F1 scores are percentages).

Model EM F1 Abs. Rate Sel. EM Sel. F1 Avg. RAUQ
Experimental Results (N = 7405 Samples)

Qwen2.5-Instruct  18.86  27.02 - - - 1.25
Qwen2.5-SFT 21.94 31.41 - - - 1.62
Qwen2.5-FCoT 24.31 33.87 - - - -
Qwen2.5-Abstain  19.47 25.78 46.34 37.98 48.46 1.32
Qwen2.5-RLVF 2037 26.24 41.17 34.62 44.60 1.40
SOTA Closed-Book Results (RECITE Paper)

Codex-002 37.11 48.37 N/A N/A N/A N/A
PalLM-62B 26.46 35.67 N/A N/A N/A N/A

Table 6: Performance Analysis of Abstention Mechanism Across Reference Models

Model Ref. Model Precision Recall TP FP FN
(Good Abs) (Bad Abs) (Missed)
4*Qwen2.5-Abstain Base 97.49%  55.69% 3,346 86 2,662
SFT 95.72% 56.83% 3,285 147 2,495
CoT 93.97% 57.54% 3,225 207 2,380
Hardest 90.53%  60.85% 3,107 325 1,999
4*Qwen2.5-RLVF Base 97.84%  49.65% 2,983 66 3,025
SFT 96.23% 50.76% 2,934 115 2,846
CoT 94.19% 51.24% 2,872 177 2,733
Hardest 91.21% 54.47% 2,781 268 2,325

Table 7: Overall Model Performance and Error Analysis Relative to Base Model

Metric Base Model SFT Model CoT Model
Overall Accuracy (Exact Match) 18.87% 21.94% 24.31%
Corrections (Base Wrong — Right) - 477 697
Regressions (Base Right — Wrong) - 249 294
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